Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plant Biotechnol J ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

2.
Eur J Med Res ; 29(1): 147, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429734

RESUMO

BACKGROUND: The aim of the study was to investigate whether the expression of CD27-CD38+ in interferon (IFN)-γ+CD4+ T cells stimulated by the specific antigen early secreted antigenic target-6 (ESAT-6)/culture filter protein-10 (CFP-10) could be a potential new therapeutic evaluation indicator for anti-tuberculosis (TB) treatment. METHODS: Newly diagnosed active pulmonary TB patients, latent TB infection (LTBI) and healthy controls were enrolled from January 2021 to December 2021. PTB patients were treated by standard anti-TB regimen 2HREZ/4HR (2 months of isoniazid (H), rifampin (R), ethambutol (E), and pyrazinamide (Z) followed by 4 months of isoniazid (H) and rifampin (R)). The difference of CD27-CD38+ expression in IFN-γ+CD4+ T cells before treatment, 2 months after treatment, and 6 months after treatment were compared. RESULTS: Total 45 PTB patients, 38 LTBI cases and 43 healthy controls were enrolled. The expression of CD27-CD38+ decreased significantly after anti-TB treatment and was comparable with that in LTBI and healthy controls when the 6-month anti-TB treatment course was completed. The decline rate of CD27-CD38+ between 6 months after treatment and baseline was positively correlated with erythrocyte sedimentation rate (r = 0.766, P < 0.0001), C-reactive protein (r = 0.560, P = 0.003) and chest computerized tomography severity score (r = 0.632, P = 0.0005). The area under receiver operator characteristic curve of CD27-CD38+ in distinguish pulmonary TB patients before and after treatment was 0.779. CONCLUSION: The expression of CD27-CD38+ in ESAT-6/CFP-10 stimulated IFN-γ+CD4+T cells can well reflect the changes of the disease before and after anti-TB treatment, which is expected to be a potential new therapeutic evaluation index. Clinical Registry number chiCTR1800019966.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Linfócitos T CD4-Positivos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Isoniazida/metabolismo , Rifampina/metabolismo , Tuberculose/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
3.
Lab Chip ; 23(23): 5039-5046, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909299

RESUMO

Flow cytometry is an essential technique in single particle analysis and cell sorting for further downstream diagnosis, exhibiting high-throughput and multiplexing capabilities for many biological and biomedical applications. Although many hydrodynamic focusing-based microfluidic cytometers have been demonstrated with reduced size and cost to adapt to point-of-care settings, the operating conditions are not characterized systematically. This study presents the flow transition process in the hydrodynamic focusing mechanism when the flow rate or the Reynolds number increases. The characteristics of flow fields and mass transport were studied under various operating conditions, including flow rates and microchannel heights. A transition from the squeezed focusing state to the over-squeezed anti-focusing state in the hydrodynamic focusing regime was observed when the Reynolds number increased above 30. Parametric studies illustrated that the focusing width increased with the Reynolds number but decreased with the microchannel height in the over-squeezed state. The microfluidic cytometric analyses using microbeads and E. coli show that the recovery rate was maintained by limiting the Reynolds number to 30. The detailed analysis of the flow transition will provide new insight into microfluidic cytometric analyses with a broad range of applications in food safety, water monitoring and healthcare sectors.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Escherichia coli , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Citometria de Fluxo
4.
Toxins (Basel) ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422962

RESUMO

Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application.


Assuntos
Aflatoxinas , Pseudomonas stutzeri , Humanos , Aspergillus flavus/metabolismo , Aflatoxinas/análise , Filogenia
5.
J Integr Plant Biol ; 64(11): 2126-2134, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083596

RESUMO

The dominant species of a biome can be regarded as its genuine indicator. Evergreen broadleaved forests (EBLFs) in subtropical East Asia harbor high levels of species biodiversity and endemism and are vital to regional carbon storage and cycling. However, the historical assembly of this unique biome is still controversial. Fagaceae is the most essential family in East Asian subtropical EBLFs and its dominant species are vital for the existence of this biome. Here, we used the dominant Fagaceae species to shed light on the dynamic process of East Asian subtropical EBLFs over time. Our results indicate high precipitation in summer and low temperature in winter are the most influential climatic factors for the distribution of East Asian subtropical EBLFs. Modern East Asian subtropical EBLFs did not begin to appear until 23 Ma, subsequently experienced a long-lasting development in the Miocene and markedly deteriorated at about 4 Ma, driven jointly by orogenesis and paleoclimate. We also document that there is a lag time between when one clade invaded the region and when its members become dominant species within the region. This study may improve our ability to predict and mitigate the threats to biodiversity of East Asian subtropical EBLFs and points to a new path for future studies involving multidisciplinary methods to explore the assembly of regional biomes.


Assuntos
Fagaceae , Árvores , Clima Tropical , Florestas , Biodiversidade
6.
Front Plant Sci ; 13: 917335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092414

RESUMO

N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic messenger RNAs. m6A was discovered in wheat about 40 years ago; however, its potential roles in wheat remain unknown. In this study, we profiled m6As in spikelets transcriptome at the flowering stage of hexaploid wheat and found that m6As are evenly distributed across the A, B, and D subgenomes but their extents and locations vary across homeologous genes. m6As are enriched in homeologous genes with close expression levels and the m6A methylated genes are more conserved. The extent of m6A methylation is negatively correlated with mRNA expression levels and its presence on mRNAs has profound impacts on mRNA translation in a location-dependent manner. Specifically, m6As within coding sequences and 3'UTRs repress the translation of mRNAs while the m6As within 5'UTRs and start codons could promote it. The m6A-containing mRNAs are significantly enriched in processes and pathways of "translation" and "RNA transport," suggesting the potential role of m6As in regulating the translation of genes involved in translation regulation. Our data also show a stronger translation inhibition by small RNAs (miRNA and phasiRNA) than by m6A methylation, and no synergistical effect between the two was observed. We propose a secondary amplification machinery of translation regulation triggered by the changes in m6A methylation status. Taken together, our results suggest translation regulation as a key role played by m6As in hexaploid wheat.

7.
Math Biosci Eng ; 19(4): 3597-3608, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341266

RESUMO

Diabetes is a metabolic disorder caused by insufficient insulin secretion and insulin secretion disorders. From health to diabetes, there are generally three stages: health, pre-diabetes and type 2 diabetes. Early diagnosis of diabetes is the most effective way to prevent and control diabetes and its complications. In this work, we collected the physical examination data from Beijing Physical Examination Center from January 2006 to December 2017, and divided the population into three groups according to the WHO (1999) Diabetes Diagnostic Standards: normal fasting plasma glucose (NFG) (FPG < 6.1 mmol/L), mildly impaired fasting plasma glucose (IFG) (6.1 mmol/L ≤ FPG < 7.0 mmol/L) and type 2 diabetes (T2DM) (FPG > 7.0 mmol/L). Finally, we obtained1,221,598 NFG samples, 285,965 IFG samples and 387,076 T2DM samples, with a total of 15 physical examination indexes. Furthermore, taking eXtreme Gradient Boosting (XGBoost), random forest (RF), Logistic Regression (LR), and Fully connected neural network (FCN) as classifiers, four models were constructed to distinguish NFG, IFG and T2DM. The comparison results show that XGBoost has the best performance, with AUC (macro) of 0.7874 and AUC (micro) of 0.8633. In addition, based on the XGBoost classifier, three binary classification models were also established to discriminate NFG from IFG, NFG from T2DM, IFG from T2DM. On the independent dataset, the AUCs were 0.7808, 0.8687, 0.7067, respectively. Finally, we analyzed the importance of the features and identified the risk factors associated with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Jejum , Humanos , Exame Físico , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia
9.
J Fungi (Basel) ; 7(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34829228

RESUMO

Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium-wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium-wheat interactions.

10.
Plant Mol Biol ; 107(6): 499-517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34596817

RESUMO

KEY MESSAGE: GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.


Assuntos
Secas , Gossypium/enzimologia , Gossypium/fisiologia , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2C/metabolismo , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Modelos Biológicos , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Proteína Fosfatase 2C/genética , Estresse Fisiológico/genética
11.
Front Microbiol ; 12: 660976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305830

RESUMO

Controlling the devastating fungal pathogen Fusarium graminearum (Fg) is a challenge due to inadequate resistance in nature. Here, we report on the identification of RNAi molecules and their applications for controlling Fg in wheat through silencing chitin synthase 7 (Chs7), glucan synthase (Gls) and protein kinase C (Pkc). From transgenic Fg strains four RNAi constructs from Chs7 (Chs7RNAi-1, -2, -3, and -4), three RNAi constructs from Gls (GlsRNAi-2, -3, and -6), and one RNAi construct from Pkc (PkcRNAi-5) were identified that displayed effective silencing effects on mycelium growth in medium and pathogenicity in wheat spikes. Transcript levels of Chs7, Gls and Pkc were markedly reduced in those strains. Double-strand RNAs (dsRNAs) of three selected RNAi constructs (Chs7RNAi-4, GlsRNAi-6 and PkcRNA-5) strongly inhibited mycelium growth in vitro. Spray of those dsRNAs on detached wheat leaves significantly reduced lesion sizes; the independent dsRNAs showed comparable effects on lesions with combination of two or three dsRNAs. Expression of three targets Chs7, Gls, and Pkc was substantially down-regulated in Fg-infected wheat leaves. Further application of dsRNAs on wheat spikes in greenhouse significantly reduced infected spikelets. The identified RNAi constructs may be directly used for spray-induced gene silencing and stable expression in plants to control Fusarium pathogens in agriculture.

12.
Medicine (Baltimore) ; 100(7): e24382, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607772

RESUMO

INTRODUCTION: Subchromosomal deletions and duplications could currently be detected by noninvasive preliminary screening (NIPS). However, NIPS is a screening test that requires further diagnosis. Here we report a fetus with an autosomal abnormality revealed by NIPS and conventional karyotype combined with copy number variations sequencing (CNV-seq) confirmed the fetus with an unbalanced translocation. PATIENT CONCERN: This was the fourth pregnancy of a 30-year-old woman who underwent 2 spontaneous abortions and gave birth to a child with a normal phenotype. The woman and her husband were healthy and nonconsanguineous. NIPS indicated a repeat of about 19-Mb fragment at the region of 16q22.1-q22.4 at 17-week gestation. DIAGNOSES: The combination of traditional karyotype and CNV-seq could better locate the abnormal chromosomal region and further identify the source of fetal chromosomal abnormalities. Simultaneously, we evaluated the fetal morphology by ultrasound examination. The karyotype of the fetus was 46,XX,der(7)t(7;16)(p22;q23) and CNV-seq results showed an approximately 20.96-Mb duplication in 16q22.1-q24.3 (69200001-90160000) and an approximately 3.86-Mb deletion in 7p22.3-p22.2 (40001-3900000). Prenatal ultrasound revealed the fetal micrognathia. The paternal karyotype was 46,XY, t (7;16) (p22;q23), while the maternal was normal. The fetus inherited an abnormal chromosome 7 from its father. INTERVENTIONS: No treatment for the fetus. OUTCOMES: Pregnancy was terminated. CONCLUSIONS: To our knowledge, the occurrence of de novo partial trisomy 16q (16q22.1-qter) and partial monosomy 7p (7p22.2-pter) has not previously been reported up to now. Here, we present the perinatal findings of such a case and a review of the literatures. CNV-seq combined with karyotype is a useful tool for chromosomal abnormalities indicated by NIPS.


Assuntos
Cromossomos Humanos Par 7/genética , Monossomia/diagnóstico , Trissomia/genética , Aborto Eugênico , Adulto , Amniocentese , Cromossomos Humanos Par 16/genética , Feminino , Humanos , Gravidez , Translocação Genética/genética , Trissomia/diagnóstico , Sequenciamento Completo do Genoma
13.
Journal of Preventive Medicine ; (12): 111-116, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-876093

RESUMO

Objective@#To evaluate the effects of dietary behaviors on the risk of hypertension, diabetes and cardiovascular diseases.@*Methods@#A total of 12 208 subjects aged 18-60 years old were investigated by questionnaires to collect demographic data, dietary behaviors and lifestyle information, when they did health examination in a tertiary hospital in Beijing from 2014 to 2019. During the observation period of five year, the incidence of hypertension, diabetes and cardiovascular diseases were collected through health examination files every year. The multivariate logistic regression model was employed to analyze the associations of dietary behaviors with hypertension, diabetes and cardiovascular diseases. @*Results@#The study included 6 218 ( 50.93% ) males and 5 990 ( 49.07% ) females. The cumulative incidence rates of hypertension, diabetes and cardiovascular diseases were 7.75%, 2.72% and 3.49%, respectively. The multivariate logistic regression analysis indicated that the high-sodium diet ( OR=1.422, 95%CI: 1.191-1.697 ) , eating fast ( OR=1.457, 95%CI: 1.102-1.974 ), eating more refined grain ( OR=1.251, 95%CI: 1.050-1.490 ) and drinking milk less than once a week ( OR=1.316, 95%CI: 1.022-1.697 ) were risk factors for hypertension. The high-sodium diet ( OR=1.344, 95%CI: 1.048-1.725 ), eating fast ( OR=1.733, 95%CI: 1.046-2.871 ), eating more meat ( OR=1.651,95%CI: 1.263-2.158 ) were risk factors for diabetes. High-sodium diet ( OR=1.501, 95%CI: 1.192-1.889 ) was risk factors for cardiovascular disease. @*Conclusion@#The diet with high sodium, more meat and refined grain as well as eating fast can increase the risk of hypertension, diabetes and cardiovascular diseases.

14.
Zhongguo Gu Shang ; 33(11): 1068-71, 2020 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-33269860

RESUMO

OBJECTIVE: To investigate the effect of intra-articular injection of tranexamic acid on blood loss and blood transfusion rate after minimally invasive unicompartmental knee arthroplasty. METHODS: From January 2015 to September 2017, 90 patients underwent minimally invasive unicompartmental knee arthroplasty were divided into tranexamic acid group and control group, 45 cases in each group. In the tranexamic acid group, there were 22 males and 23 females, aged 62 to 69 (66.1±2.4) years;in the control group, 20 males and 25 females, aged 63 to 71(68.5±5.2) years. The amount of bleeding in the drainage ball at 48 hours after operation was recorded, and the blood transfusion rate and hematocrit level duringthe perioperative period were recorded. The factors influencing perioperative blood loss included gender, age and body mass index (BMI). RESULTS: All patients were followed up for 12.5 to 28.3 (22.8±7.9) months. During the follow-up, the wounds of the two groups healed well, and no deep vein thrombosis and pulmonary embolism occurred. There was no significant difference in postoperative blood loss between the tranexamic acid group and the control group. The postoperative bleeding volume in the tranexamic acid group was (110.0±52.1) ml, and that in the control group was (123.0±64.5) ml (P=0.39). There was no blood transfusion in the two groups. CONCLUSION: Intra articular injection of tranexamic acid can not significantly reduce the postoperative blood loss in patients with minimally invasive unicompartment.


Assuntos
Antifibrinolíticos , Artroplastia do Joelho , Hemostáticos , Ácido Tranexâmico , Idoso , Antifibrinolíticos/uso terapêutico , Artroplastia do Joelho/efeitos adversos , Perda Sanguínea Cirúrgica/prevenção & controle , Feminino , Humanos , Injeções Intra-Articulares , Masculino , Pessoa de Meia-Idade , Hemorragia Pós-Operatória
15.
Plant Mol Biol ; 104(1-2): 67-79, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621165

RESUMO

Acetylation and deacetylation of histones are important for regulating a series of biological processes in plants. Histone deacetylases (HDACs) control the histone deacetylation that plays an important role in plant response to abiotic stress. In our study, we show the evidence that GhHDT4D (a member of the HD2 subfamily of HDACs) is involved in cotton (Gossypium hirsutum) response to drought stress. Overexpression of GhHDT4D in Arabidopsis increased plant tolerance to drought, whereas silencing GhHDT4D in cotton resulted in plant sensitivity to drought. Simultaneously, the H3K9 acetylation level was altered in the GhHDT4D silenced cotton, compared with the controls. Further study revealed that GhHDT4D suppressed the transcription of GhWRKY33, which plays a negative role in cotton defense to drought, by reducing its H3K9 acetylation level. The expressions of the stress-related genes, such as GhDREB2A, GhDREB2C, GhSOS2, GhRD20-1, GhRD20-2 and GhRD29A, were significantly decreased in the GhHDT4D silenced cotton, but increased in the GhWRKY33 silenced cotton. Given these data together, our findings suggested that GhHDT4D may enhance drought tolerance by suppressing the expression of GhWRKY33, thereby activating the downstream drought response genes in cotton.


Assuntos
Secas , Gossypium/metabolismo , Histona Desacetilases/metabolismo , Estresse Fisiológico/fisiologia , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Transcriptoma
16.
Toxins (Basel) ; 12(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492959

RESUMO

Trichothecenes are the most common mycotoxins contaminating small grain cereals worldwide. The C12,13 epoxide group in the trichothecenes was identified as a toxic group posing harm to humans, farm animals, and plants. Aerobic biological de-epoxidation is considered the ideal method of controlling these types of mycotoxins. In this study, we isolated a novel trichothecene mycotoxin-de-epoxidating bacterium, Desulfitobacterium sp. PGC-3-9, from a consortium obtained from the soil of a wheat field known for the occurrence of frequent Fusarium head blight epidemics under aerobic conditions. Along with MMYPF media, a combination of two antibiotics (sulfadiazine and trimethoprim) substantially increased the relative abundance of Desulfitobacterium species from 1.55% (aerobic) to 29.11% (aerobic) and 28.63% (anaerobic). A single colony purified strain, PGC-3-9, was isolated and a 16S rRNA sequencing analysis determined that it was Desulfitobacterium. The PGC-3-9 strain completely de-epoxidated HT-2, deoxynivalenol (DON), nivalenol and 15-acetyl deoxynivalenol, and efficiently eliminated DON in wheat grains under aerobic and anaerobic conditions. The strain PGC-3-9 exhibited high DON de-epoxidation activity at a wide range of pH (6-10) and temperature (15-50 °C) values under both conditions. This strain may be used for the development of detoxification agents in the agriculture and feed industries and the isolation of de-epoxidation enzymes.


Assuntos
Desulfitobacterium/metabolismo , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fungos/metabolismo , Microbiologia do Solo , Tricotecenos/metabolismo , Triticum/microbiologia , Concentração de Íons de Hidrogênio , Inativação Metabólica , Oxigênio/metabolismo , Temperatura
17.
BMC Plant Biol ; 20(1): 217, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410659

RESUMO

BACKGROUND: Mitogen-activated protein kinase kinase kinases (MAPKKKs) are significant components in the MAPK signal pathway and play essential roles in regulating plants against drought stress. To explore MAPKKK gene family functioning in cotton response and resistance to drought stress, we conducted a systematic analysis of GhMAPKKKs. RESULTS: In this study, 157 nonredundant GhMAPKKKs (including 87 RAFs, 46 MEKKs and 24 ZIKs) were identified in cotton (Gossypium hirsutum). These GhMAPKKK genes are unevenly distributed on 26 chromosomes, and segmental duplication is the major way for the enlargement of MAPKKK family. Furthermore, members within the same subfamily share a similar gene structure and motif composition. A lot of cis-elements relevant to plant growth and response to stresses are distributed in promoter regions of GhMAPKKKs. Additionally, these GhMAPKKKs show differential expression patterns in cotton tissues. The transcription levels of most genes were markedly altered in cotton under heat, cold and PEG treatments, while the expressions of some GhMAPKKKs were induced in cotton under drought stress. Among these drought-induced genes, we selected GhRAF4 and GhMEKK12 for further functional characterization by virus-induced gene silencing (VIGS) method. The experimental results indicated that the gene-silenced cotton displayed decreased tolerance to drought stress. Malondialdehyde (MDA) content was higher, but proline accumulation, relative leaf water content and activities of superoxide dismutase (SOD) and peroxidase (POD) were lower in the gene-silenced cotton, compared with those in the controls, under drought stress. CONCLUSION: Collectively, a systematic survey of gene structure, chromosomal location, motif composition and evolutionary relationship of MAPKKKs were performed in upland cotton (Gossypium hirsutum). The following expression and functional study showed that some of them take important parts in cotton drought tolerance. Thus, the data presented here may provide a foundation for further investigating the roles of GhMAPKKKs in cotton response and resistance to drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , MAP Quinase Quinase Quinases/genética , Família Multigênica , Proteínas de Plantas/genética , Gossypium/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
18.
Food Chem ; 321: 126703, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247890

RESUMO

The Fusarium mycotoxin deoxynivalenol (DON) is typically controlled by fungicides. Here, we report DON detoxification using enzymes from the highly active Devosia strain D6-9 which degraded DON at 2.5 µg/min/108 cells. Strain D6-9 catabolized DON to 3-keto-DON and 3-epi-DON, completely removing DON in wheat. Genome analysis of three Devosia strains (D6-9, D17, and D13584), with strain D6-9 transcriptomes, identified three genes responsible for DON epimerization. One gene encodes a quinone-dependent DON dehydrogenase QDDH which oxidized DON into 3-keto-DON. Two genes encode the NADPH-dependent aldo/keto reductases AKR13B2 and AKR6D1 that convert 3-keto-DON into 3-epi-DON. Recombinant proteins expressed in Escherichia coli efficiently degraded DON in wheat grains. Molecular docking and site-directed mutagenesis revealed that residues S497, E499, and E535 function in QDDH's DON-oxidizing activity. These results advance potential microbial and enzymatic elimination of DON in agricultural samples and lend insight into the underlying mechanisms and molecular evolution of DON detoxification.


Assuntos
Aldo-Ceto Redutases/metabolismo , Hyphomicrobiaceae/enzimologia , Tricotecenos/metabolismo , Triticum/enzimologia , Fusarium/metabolismo , Simulação de Acoplamento Molecular , NADP/metabolismo , Oxirredução , Quinona Redutases/metabolismo
19.
Plant Mol Biol ; 103(4-5): 391-407, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193788

RESUMO

Mitogen-activated protein kinases (MAPKs) are important in regulating plant development as well as stress response. In this study, we genome-widely identified 56 MAPK genes in upland cotton. These MAPK genes unequally distribute on 22 chromosomes of cotton genome, but no MAPK gene is located on At_Chr6, Dt_Chr6, At_Chr13 and Dt_Chr13. The exons and introns in GhMAPK gene family vary widely at the position, number and length. Furthermore, GhMAPK family can be divided into 4 groups (A, B, C and D), and the TEY type of T-loop exists in three groups (A, B and C), but the TDY type of T-loop is only in group D. Further study revealed that some GhMAPK genes (including GhMPK6) are preferentially expressed in elongating fibers. GhMPK6 maintains a high phosphorylation level in elongating fibers, and its phosphorylation was enhanced in fibers by phytohormones brassinosteroid (BR), ethylene and indole-3-acetic acid (IAA). Additionally, GhMPK6 could interact with GhMKK2-2 and GhMKK4, suggesting that GhMKK2-2/4-GhMPK6 module may be involved in phosphorylation of its downstream proteins for regulating fiber elongation of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Gossypium/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Fibra de Algodão , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...